Tuesday, July 2, 2024

Biocompatibility Evaluation of Breathing Gas Pathways in Medical Devices

StaciH111
StaciH111
STEMart is an industry-leading eCommerce platform, with an expanded global footprint, we now have a broad portfolio of more than 10,000 products. In the fields of science, technology, and engineering, from the discovery stage towards the manufacturing process, we aim to provide best-in-class lab materials, medical instruments and consumables, excellent technologies, and high-quality services to customers all over the world. We are dedicated to making research and biotech production simpler and safer, and through that, we aim to accelerate access to better health for people everywhere.

Must read

I am StaciH111 (staci.horme@outlook.com). I hold full responsibility for this content, which includes text, images, links, and files. The website administrator and team cannot be held accountable for this content. If there is anything you need to discuss, you can reach out to me via staci.horme@outlook.com email.

Disclaimer: The domain owner, admin and website staff of New York City US, had no role in the preparation of this post. New York City US, does not accept liability for any loss or damages caused by the use of any links, images, texts, files, or products, nor do we endorse any content posted in this website.

Biocompatibility evaluation of breathing gas pathways in medical devices is a powerful tool for the evaluation of contaminants from the air emitted from the device for Volatile Organic Compounds (VOCs) and particulate matter when the gas pathway is intended to contact a patients’ respiratory tract.

Standard for Biocompatibility Evaluation of Breathing Gas Pathways in Medical Device

“Chemical Characterization of medical device materials”, part eighteen of the Biological evaluation of medical device standards(ISO 10993-18), gives out the general guidance for E/L testing including polar, semi-polar, and nonpolar solvents measure leaching of organic compounds. It also outlines that VOCs can be determined either by an analysis of aqueous extracts or direct analysis of test articles by heated headspace.

ISO 18562, the standard for biocompatibility evaluation of material or medical device with a breathing gas pathway, presents instructions for E/L extraction with purified water to simulate humidified vapor condensate, VOC analysis for VOCs emitted in a gas stream under simulated use conditions(temperature, flow rate, duration) with GC/MS method, and particulates analysis for emissions of PM2.5 and PM10. It’s noteworthy that the flow rate and temperature for sampling chosen should be clinically relevant.

Our Testing of Breathing Gas Pathways Services

  • Medical devices with breathing gas pathways covered by our service as follows:

Anesthesia workstations

Ventilators

Breathing system

Oxygen conservation equipment

Oxygen concentrators

Mouthpieces

Nebulisers

Incubators

Resuscitators

Low-pressure hoses

Breathing tubes

Humidifiers

Heat and moisture exchanges

Breathing system filters

Respiratory gas monitors

Masks

Y-pieces

Accessories

  • Particulate matter measurement for those emitted from the medical device.

Flowing clean and dried air through the test material and collecting particulates matter from the output. Calculating the particulate matter levels of PM2.5 and PM10 and recording the minimum, maximum, and average particulate concentration.

  • VOC analysis with Gas Chromatography Mass Spectrometry (GC/MS).

We have two options for collecting and sampling VOCs: Thermal Desorption Tubes/Canisters Method and Stainless Steel SUMMA Canister Method. VOCs are collected by leading clean and dry air through the test material in a controlled environment. Subsequently, sampling particulates matter from the output. Gas samples are analyzed for VOCs by GC/MS. The concentration of VOCs in µg/m3 is reported. CO, CO2, and Ozone may also be analyzed.

  • Leachables analysis in condensate with Gas Chromatography Mass Spectrometry (GC/MS) and Inductively Coupled Plasma (ICP) method.

After collection of leachables, we provide determination of the metal ion concentrations with pharmacopeia methods, and identification and quantification of organic impurities with GC/MS.

  • Interpretation of inhalation toxicity data relevant to breathing gas pathways for the medical device.

STEMart offers biocompatibility evaluation of material or medical device with a breathing gas pathway utilized modern analytical techniques and instrumentation, following the biocompatibility guidelines modified for medical devices and using a solid scientific rationale. If you have additional questions about the Testing of Breathing Gas Pathways Services or would like to find out more about our services, please feel free to contact us.

More articles

Trending

Latest article